Problem Definition: A Shared Responsibility in Data Management

In a data science strategy, the precise definition of the problem is crucial. Asking the right questions enables us to obtain insights, predictions, and useful knowledge for businesses in a big data environment. It is important to involve all stakeholders within the organization and use direct methods to frame the problem, integrating perspectives from different areas. Collaboration between data scientists and business users is fundamental to the success of the project.

Definición del problema: una responsabilidad de todos en la gestión de los datos

En una estrategia de ciencia de datos, la definición precisa del problema es crucial. Hacer las preguntas correctas nos permite obtener perspectivas, predicciones y conocimientos útiles para los negocios en un entorno de big data. Es importante involucrar a todos los actores de la organización y utilizar métodos directos para plantear el problema, integrando la visión de diferentes áreas. La colaboración entre científicos de datos y usuarios del negocio es fundamental para el éxito del proyecto.

The ABC of a Data Science Process

The COVID-19 pandemic has negatively impacted the Spanish economy, especially affecting SMEs with lower levels of digitalization. The Plan to Boost the Digitalization of SMEs and EU funds provide opportunities to accelerate digital transformation. Data science is crucial, using data to make dynamic decisions and gain insights. The data science process involves defining the problem, preparing and studying the data, creating and validating models, and visualizing results. A skilled team and a systematic approach are necessary to fully leverage data and make informed decisions.